GERDA: GERmanium Detector Array searching for 0νββ **decay**

Xiang Liu

Max-Planck-Institut für Physik, Munich

BB

Baryon & Lepton Number Violation workshop LBNL, Berkeley, 20-22/09/2007

$0_{\nu\beta\beta}$ decay \rightarrow effective Majorana neutrino mass m_{\beta\beta}

• $2\nu\beta\beta$ decay: (A,Z) \rightarrow (A,Z+2) +2e⁻+2 ν SM allowed & observed. • $0\nu\beta\beta$ decay: $\Delta L=2$ (A,Z) \rightarrow (A,Z+2) +2e⁻ if vs Majorana & have mass.

•many isotopes can be used to search for $0\nu\beta\beta$.

■measure half-life T_{1/2}:

$$T_{\frac{1}{2}}^{-1} = G^{0\nu} (E_0, Z) M^{0\nu} \Big|^2 \langle m_{\beta\beta} \rangle^2$$

 $G^{0_{\nu}}: \text{ phase space integral} \\ M^{0_{\nu}}: \text{ nuclear matrix element} \\ <m_{\beta\beta}> = \mid \Sigma U_{ei}^2 m_i \mid \\ (U_{ei}: \text{ neutrino mixing matrix})$

Search for $0\nu\beta\beta$ with Ge76

Rare process, focus of experiment design:

- → large target mass & long exposure M·T
- \rightarrow high signal efficiency ϵ

→ extremely low level background

```
if T_{1/2}=1.2\cdot10^{25} y,
expect 13 signal
in GERDA Phase-I
(~2 years running)
```

Why Ge76? Source=detector, 85~95% signal efficiency

Constraint (HPGe)
 Constraint energy resolution (FWHM ~3keV at 2MeV, small search window)

 →reduce background, including 2vββ

existing detectors & experiences from IGEX & HdMo

Onew development: segmentation, new type of Ge detector etc...

©need enrichment (7.6% natural abundance, most bg scale with target mass)

Previous Ge76 experiments					
	HdMo	IGEX	_		
location	LNGS	Canfranc			
period	90-03	89-99	_		
exposure[kg·y]	71.1	8.87	Background index B:		
B [counts/kg·keV·y]	0.11	0.2	counts/kg·keV·y		
T _{1/2} limit (90%CL)[y]	1.9·10 ²⁵	1.6·10 ²⁵	ka: Ge mass		
"Evidence for $0\nu\beta\beta$ " H.V.Klapdor-Kleingrothaus, etc., Phys. Lett. B 586 (2004) 198-21	1.2 ·10 ²⁵ (0.69-4.18 3σ) 2		keV: energy window y: exposure time		
2039 16 14 12 10 8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0	keV	116.75 mole.ye 12 10 $T_{1/2}(0v)$ 8 6 4 2 0 2020 2030	ears - 8.87 kg.y in ⁷⁶ Ge $(-) > 1.57 \times 10^{25} \text{ yr (90\% CL)}$ $(-) = 1.57 \times 10^{25} \text{ yr (90\% CL)}$		
2000 2010 2020 2030 2040 Energy, keV	2050 2060		Energy (keV)		

page 4

GERDA experiment at LNGS

GERDA design

Germanium detectors & holders

Phase I: 3 IGEX & 5 HdMo detectors, 17.9 kg, non-segmented

(6 non-enriched detectors from Genius-TF for reference)

Phase II: ~25kg, 18 segments $(3z \times 6\phi)$

Ultra-pure Cu & Teflon for holder (19g Cu per Phase-II detector)

segmented detectors for Phase-II

GERDA physics goal

	phase	Ι	II	III	
	exposure[kg·y] 30		100	>1000	
	bg [counts/kg·keV·y]	10-2	10-3	<10-4	
	Limit on $m_{\beta\beta}$ [eV]	0.27	0.13	~0.05	
90% prob. lower limit T [10 ²⁵ y]	No background 10 ⁻⁴ counts/(kg·keV·y) 10 ⁻³ counts/(kg·keV·y) 10 ⁻² counts/(kg·keV·y) Claim Phase II Phase I verify/veto claim 0 50 100 150 Exposure [kg·ye	III 200 ars]	Claim of e signal: 2 bg level: (H.V.Klapdor-K Phys. Lett. B 5 If claim tr signal: 4 bg: 3	evidence 28.75±6.86 eve 0.11 cts/ kg-ke (leingrothaus, etc., 586 (2004) 198-212 ue, phase-I wi ~13 events 8 events in 10k window at 2Me	ents eV-y II see: ceV

(assume 4keV FWHM at 2MeV)

Cosmogenic production of radioactive isotopes (Co60 & Ge68) → minimize time above ground

Cosmic muon & induced neutron

 \rightarrow underground lab, muon veto and water C veto

Ambient neutron & photon \rightarrow water & LAr shield

Radioactive contaminations of materials close to detectors, including detectors themselves (mostly photons)

- \rightarrow rigorous material selection
- \rightarrow use only screened materials
- \rightarrow crystal anti-coincidence
- → segment anti-coincidence

(segmented detectors)

(signal: single-site, photon: multi-site)

 \rightarrow pulse shape analysis

signal 2 electron

background external photon

Part		Backgro	und contribution
		[10 ⁻⁴ co	unts/(kg·keV·y)]
Detector	⁶⁸ Ge	_ 10.8	cosmogenic production
	⁶⁰ Co	0.3	(Ge68: T _{1/2} =271days)
	Bulk	3.0	
	Surf.	3.5 ->	further reduction
Holder	Cu	0.9	expected from PSA
	Teflon	1.4	new design with
Cabling	Kapton	7.5 🦿	reduced material
Electronics		3.5	results with LN2.
Infrastructure		1.0	will reduce with LAr
Muons and neutro	ns	2.0 /	
Total		32	

MaGe MC package developed together with Majorana)

(

R&D: Phase-II prototype detector for γ rejection

One 18-fold segmented n-type detector exposed to γ and n sources \rightarrow Confirmed segmentation technique & MC simulation

"Characterization…" I. Abt *et al.* NIM A **577** (2007) 574 "Identification of photon events…"Abt *et al.* arxiv:nucl-ex/0701005 (sub. to NIM A) "PSA…" I. Abt *et al.* arXiv:0704.3016 (accepted by EPJC 53, 19-27(2007) "Test of PSA…" I. Abt *et al.* arXiv:0708.0917 "Neutron interaction…" (coming soon)

energy region	segment suppr.
1.3MeV [Co60]	2.6
2.6MeV [TI208]	3.0
2.0MeV [Co60]	14.2
2.0MeV [TI208]	1.7

page 11

Phase-I:

- All detectors tested, FWHM
 2-3keV at 1.3MeV
- Now taken out from cryostat
 & being refurbished.

Phase-II:

37.5kg Ge enriched in 76 (88%) delivered & stored underground
Next step: purification, crystal pulling, detector fabrication.

IGEX

HdMo

enriched Ge transportation

Construction at LNGS started

Status

Impurity measurement (phase-II)

End 2007, water tank & cryostat installing at LNGS.

Summer 2008, cleanroom & suspension.

Afterwards, detector commissioning.

R&D for future: LArGe at GDL (liquid Argon scintillation veto)

veto background by tagging extra energy in LAr

P. Peiffer *et al.*, Nucl. Phys. B. Proc. Supp. **143** (2005) 511

Factor 300 reduction in ROI

Summary

Open questions in v : absolute mass? hierarchy? Majorana or Dirac? $0v2\beta$ might answer all these questions.

GERDA searches for 0v2β decay in ⁷⁶Ge.
Experiment design driven by background reduction.
Ge detectors submerged directly in LAr (cooling & shielding).
Phase-I verify/veto the claim.
Phase-II (segmented detectors) reaches sensitivity on m_{ββ} 120meV.

Construction work at LNGS started.
Cryostat & water tank, end 2007.
Suspension & clean room, summer 2008.
Detector commissioning.

Once the GERDA concept is proven, global experiment with 1ton Ge might be pursued (MoU with Majorana exists).

GERDA collaboration

Institute for Reference Materials and Measurements, Geel, Belgium Institut für Kernphysik, Universität Köln, Germany Max-Planck-Institut für Kernphysik, Heidelberg, Germany Max-Planck-Institut für Physik (Werner-Heisenberg-Insititut), München, Germany Physikalisches Institut, Universität Tübingen, Germany Dipartimento di Fisica dell'Universitä; di Padova e INFN Padova, Padova, Italy INFN Laboratori Nazionali del Gran Sasso, Assergi, Italy Universitá; di Milano Bicocca e INFN Milano, Milano, Italy Jagiellonian University, Cracow, Poland Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia Institute for Theoretical and Experimental Physics, Moscow, Russia Joint Institute for Nuclear Research, Dubna, Russia Russian Research Center Kurchatov Institute, Moscow, Russia University Zurich, Switzerland

backup

effective Majorana neutrino mass vs neutrino mass

Sensitivity on effective Majorana neutrino mass

B: background index ΔE : energy resolution

Co60 & Ge68 background index for Phase-I detectors

Results of the calculations.

Table 4. Co60 data

Det.	Total	Average	Final Average Detector				
Туре	Mass,	ncl/kg	Mass,	Pr. rate,	Average	Decays,	BI, 10 ⁻³
	ĸg		kg	ncl/d/kg	ncl/kg	1 /y /kg	cpy/keV/kg
HD-M	11.5	205	18.1	6.6	231	30	3.3
IGEX	6.6	277					

For HD-M detectors Ge68 contribution is negligible

Table 5. Ge68 data

Det.	Total	Pr. rate,	Average	Decays,	BI, 10 ⁻³
Туре	Mass, kg	ncl/d/kg	Ncl/kg	1 /y /kg	cpy/keV/kg
IGEX	6.6	5.6	4.5	4.2	0.8

HdMo: 0.11 cts/[keV kg year]

- \rightarrow 60Co contribution 0.03 (during operation)
- \rightarrow contribution now, ~0.01

MC simulation of background (phase II)

Part	Material	Contamination	Background contri.
		level [µBq/kg]	[10 ⁻⁴ cts/(kg·keV·y)]
Detector		Ge68	10.8
		Co60	0.3
	Bulk	0.1[²³⁸ U & ²²⁸ Th]	3.0
	Surf.	0.3[²¹⁰ pb]	3.5
Holder	Cu	16[²³⁸ U] 19[²²⁸ Th]	0.9
	Teflon	160[²³⁸ U & ²²⁸ Th]	1.4
Cabling	Cu	16[²³⁸ U] 19[²²⁸ Th]	0.1
	Kapton	2000[²³⁸ U & ²²⁸ Th]	7.5
Electronics		10 ⁵ [²³⁸ U & ²²⁸ Th]	3.5
Liquid nitrogen		0.5 μBq/m3	<0.1
Infrastructure			1.0
Muons and neut	rons		2.0

R&D: 18-fold segmented Ge detector

"Characterization…" I. Abt *et al.* NIM A **577** (2007) 574 "Identification of photon events…"Abt *et al.*

arxiv:nucl-ex/0701005 (sub. to NIM A)

"PSA..." I. Abt et al. arXiv:0704.3016

(accepted by EPJC 53, 19-27(2007)