Anthony Pullen
(Caltech/JPL)
Abstract:
Large-scale structure (LSS) surveys have produced powerful probes of various cosmological phenomena, including inflation, reionization, and the accelerated expansion epoch. Current and upcoming LSS surveys will allow us to answer several fundamental questions about our Universe, but systematic effects are of great concern to these missions. We present our latest results considering systematic effects in upcoming LSS surveys. We show that photometric calibration errors contaminate photometric surveys on large scales, which biases measurements of non-Gaussianity, and present methods to mitigate their effects. We also discuss the contamination of emission-line surveys and dark energy measurements by interlopers, as well as potential methods to remove the contaminating emission lines. Finally we discuss "intensity mapping", a new LSS survey strategy where we map fluctuations in the intensity signal from star-forming galaxies and the intergalactic medium in order to probe LSS and reionization.